Utilisation de la technologie UVC de Sanuvox afin de réduire le risque de propagation du virus SARS-CoV-2

Utilisation de la technologie UVC de Sanuvox afin de réduire le risque de propagation du virus SARS-CoV-2

  • Il est reconnu que le rayonnement UVC (longueur d’onde 254 nm) possède des propriétés germicides. L’irradiation par UVC dénature les acides nucléiques (ADN/ARN), ce qui empêche la reproduction de pathogènes biologiques (moisissures, virus, bactéries).1, 2
  • Une étude effectuée par l’Agence de protection de l’environnement (EPA) et du département de la sécurité intérieure des États-Unis (Homeland Security) a démontré qu’une unité Sanuvox installée dans un conduit de ventilation pouvait inactiver jusqu’à 99,97% des bactéries et virus testés. Les bactéries et virus à l’étude (B.atrophaeus, S.marescens, MS2), sont connus pour être plus résistants à l’UVC que le virus SARS-CoV-2. 4, 5
  • Plusieurs agences de santé et organismes d’ingénierie (ASHRAE, REHVA, CDC) reconnaissent maintenant le rôle important de la transmission par aérosol du SARS-CoV-2, le virus responsable de la COVID-19. Ces agences et organismes recommandent aussi l’utilisation d’UVC germicide (UVGI) comme moyen efficace de réduire le risque de propagation du virus à l’intérieur. 6, 7, 8, 9
  • Puisque les unités Sanuvox sont sélectionnées en fonction des paramètres des systèmes de ventilation (CVAC), la puissance adéquate du rayonnement UV peut être calculée par le logiciel de dimensionnement de Sanuvox. Les unités BioWall peuvent donc atteindre la désinfection recommandée de 99% en une seule passe, et ce sans limitation de la vélocité de l’air.

 

Tous les liens sont en anglais.

1 https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/uv-lights-and-lamps-ultraviolet-c-radiation-disinfection-and-coronavirus

2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789813/

3 https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHSRC&address=nhsrc/&dirEntryId=154947

4 https://www.springer.com/gp/book/9783642019982

https://www.researchgate.net/publication/339887436_2020_COVID-19_Coronavirus_Ultraviolet_Susceptibility

https://www.ashrae.org/about/news/2021/ashrae-epidemic-task-force-releases-updated-airborne-transmission-guidance

7 https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientific-brief-sars-cov-2.html

https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V4_09122020.pdf

9 https://www.ashrae.org/technical-resources/filtration-disinfection

Autres articles qui pourraient vous intéresser :

Reportage de El Periódico sur une nouvelle méthode de désinfection (article en espagnol)

Reportage de El Periódico sur une nouvelle méthode de désinfection (article en espagnol)

Utilizando la combinación de la luz UV, la nebulización o microdifusión molecular, la pulverización y la aplicación directa para la eliminación del SARS-Cov-2.

ASEPT2X_Modible_UV_Sterilizer-app-05-resized

Equipos UV EULEN Limpieza Hospitalaria. / EPDA

EULEN Limpieza, actividad del Grupo EULEN, líder en nuestro país en el diseño de servicios a empresas y siguiendo con su objetivo de ofrecer a la sociedad servicios innovadores que aportan soluciones útiles, de calidad y sostenibles, ha concluido -tras multitud de ensayos realizados por su departamento Técnico de higienistas exclusivo para el entorno Hospitalario y de un equipo de I+D+I- que la mejor técnica para eliminar virus, bacterias, hongos y agentes contaminantes orgánicos similares en entornos sanitarios es una combinación de diferentes técnicas aisladas.

La efectividad que cada una de ellas tiene en diferentes aspectos, hace que dicha combinación de técnicas específicas como laluz UV, la nebulización o microdifusión molecular, la pulverización y la aplicación directa sea la técnica definitiva en la limpieza hospitalaria frente al SARS-Cov-2.

Tecnología puntera

Actualmente la compañía dispone de los equipos más avanzados a nivel mundial y que otorgan una máxima seguridad de utilización tanto para los operarios que los manejan como para cualquier usuario del espacio tratado, especialmente en el ámbito hospitalario.

Destacan las unidades del equipo Asept.2x de Sanuvox Technologies, empresa canadiense líder de su sector. Este dispositivo puntero en desinfección por luz ultravioleta se utiliza tanto en quirófanos como en habitaciones. La luz UVC y la luz UVV del equipo tienen la misma longitud de onda que la producida por el Sol y ataca a los microorganismos a nivel molecular, desactivando y destruyendo los contaminantes, así como degradando los agentes químicos y olores. A diferencia de las lámparas convencionales, los sistemas de purificación UV que utiliza EULEN Limpieza usan un proceso patentado diseñado para entregar la máxima cantidad de luz UV.

Para complementar el sistema de desinfección por UV, la compañía emplea la última tecnología en nebulización y pulverización de generación de niebla nano y micrométricacon dinámica inductiva. Es la misma tecnología que en la actualidad está siendo usado también por las Unidades Tecnológicas de Cuerpos de Seguridad del Estado en la lucha contra el Sars-COV-2. Dotado con la última tecnología de desinfección mediante chorro regulable que permite desinfectar las estancias en un corto tiempo, minimiza tanto el desinfectante utilizado como los residuos y posibles daños a personas e infraestructuras. Asimismo, permite tratar grandes áreas en cortos periodos de tiempo, accediendo a todas las superficies y zonas de difícil acceso, realizando el perfecto mojado de todas las superficies a desinfectar.

Por último, de acuerdo a su política de utilización de los mejores biocidas del mercado, desarrollados por las empresas líderes, junto a los profesionales formados y acreditados acorde con la normativa establecida por el Ministerio de Sanidad en cuanto a la aplicación de Biocidas,se selecciona en cada momento el más conveniente para aplicar por el método óptimo en función de las necesidades. Por ello, es importante distinguir entre los de un espectro más específico de los de amplio espectro.

En definitiva, la combinación de todas estas técnicas y tecnología se convierten en la mejor solución frente a la COVID-19 en espacios hospitalarios y aseguran un resultado óptimo en desinfección en el menor tiempo posible.

En la actualidad, numerosos hospitales de la Generalitat Valenciana y otros de referencia en la geografía española confían en las soluciones de EULEN Limpieza cuya estructura y forma de trabajo propia asegura el mejor resultado en un entorno como el sanitario.

Autres articles qui pourraient vous intéresser :

Reportage de El Mundo sur l’ASEPT.2X en Espagne (article en espagnol)

Reportage de El Mundo sur L'ASEPT.2X en Espagne (article en espagnol)

De Héctor Atienza

La Clínica Universidad de Navarra emplea un máquina pionera en España que desinfecta de COVID-19 las habitaciones del hospital en poco más de cinco minutos con rayos UV. Estos modelos se fabrican en Canadá y cada equipo cuesta hasta 160.000 euros.

Dos máquinas UVR desinfectando un quirófano en la Clínica Universidad de Navarra.

La lucha contra el Covid-19 también se pelea estos días al milímetro en cada rincón de los centros hospitalarios por los equipos de limpieza. El coronavirus ha demostrado tener una alta capacidad de transmisión y fácil apego a todo tipo de materiales de forma invisible. Su resistencia complica las labores de desinfección de las salas en plena crisis sanitaria.

Una de las técnicas más innovadoras en esta particular batalla contra el virus son las lámparas germicidas de irradiación ultravioleta (UVGI). Con esta tecnología tanto las estancias de los hospitales como los quirófanos quedan libres del bicho tras su paso en un corto periodo de tiempo.

“Son muy efectivas porque destruyen tanto el ADN como el ARN, donde está la programación genética de los virus y las bacterias. Una destrucción total en poco tiempo que permite el acceso casi inmediato a las estancias”, destaca el doctor de la Clínica Universidad de Navarra, Francisco Guillén Grima, cuyos centros en Madrid y Pamplona aplican esta técnica pionera de trabajo.

Se trata de una tecnología relativamente novedosa en España. Con las técnicas tradicionales de esterilización de espacios, como el peróxedo de hidrógeno y las botellas de gas o vapor, los pacientes deben esperar entre una y tres horas para poder acceder a la habitación. Mientras que los equipos ASEPT-2x UV permiten su entrada en poco más de 10 minutos después de la salida del último paciente.

El médico Guillén Grima posando junto a un modelo ASEPT-2X UV.

“Las recibimos hace justo ahora dos años. La primera vez que las utilizamos fue porque se había intervenido quirúrjicamente a un paciente infeccioso, pero el quirófano se necesitaba urgente para un transplante cardiaco. En estos casos, te avisan cuando hay una posible donación y se debe actuar de inmediato. Metimos las dos torres y en 20 minutos el quirófano estaba operativo“, añade Guillén Grima que también fue uno de los 70 científicos que firmaron el manifiesto enviado en marzo a Pedro Sánchez solcitando el confinamiento de la población.

Fabricados por la firma canandiense Sanuvox, los equipos tienen una altura de 1,60 metros y poco más de 71 centímetros de ancho. Con apenas 45 kilos de peso, su transporte se realiza de forma sencilla con sus ruedas guía por todas las dependencias del hospital.

El único inconveniente que pueden tener estos equipos son las zonas de sombra que genera la lámpara UV cuando actúa. Para contrarrestar este hándicap, el personal técnico sitúa la máquina en varios puntos de las habitaciones evitando así cualquier recoveco con virus.

“Uno de los equipos se compone de dos torres que trabajan simultáneamente y cada lámpara se activa cinco minutos. Pero ahora con el tema de coronavirus hemos subido a seis minutos para asegurar la desinfección como un margen de seguridad total. Con la crisis del coronavirus también hemos alquilado cuatro torres más porque no dábamos a basto“, añade el especialista.

Son equipos caros. Según ha podido confirmar EL MUNDO, cuestan entre 60.000 y 140.000 euros, en función de las características del modelo. Algunos fabricantes ya ofrecen versiones que se mueven de forma autónoma por las instalaciones hospitalarias. Sin embargo, la clave del equipo está en el software que registra la máquina vía Wifi en el servidor del hospital. Pueden ofrecer diferentes soluciones tanto de servicios como de control de salud.

“Al quemar el polvo, también se produce cierto olor que se va enseguida. Si quieres que no huela a ozono, hay modelos que llevan unos filtros, pero la máquina cuesta más cara”, destaca el doctor Guillén Grima.

Estos equipos, que en España son distribuidos por la empresa tecnológica Alfatec Sistemas, también están presentes en los centros de la Fundación Jiménez Díaz en Madrid, del grupo QuirónSalud, y en la empresa de servicios generales Eulen.

LÁMPARA PARA UTENSILLOS

La técnica de desinfección ultravioleta, con una lámpara de pequeñas dimensiones, también se utiliza en los hospitales para limpiar de gérmenes en equipos de uso habitual entre pacientes y en parte del material médico. Sin embargo, este equipo también hace una especial labor desesterilizando los mandos a distancia de las televisiones.

“Es un equipo que se toca mucho por pacientes y acompañantes. Nosotros ahora los metemos en la máquina y salen dentro de una bolsa precintada. También los usamos con los termómetros, endoscopios… Es una técnica nueva que tendrá mucho futuro en España”, añade el médico.

Autres articles qui pourraient vous intéresser :

Efficacités des purificateurs d’air aux UV de Sanuvox contre les virus

Efficacités des purificateurs d'air aux UV de Sanuvox contre les virus

La société Sanuvox, un chef de file nord-américain depuis 25 ans en désinfection de l’air et des surfaces, tient à mettre en garde les personnes tentées d’acheter des purificateurs d’air ou d’autres appareils contre d’éventuelles allégations qui pourraient s’avérer trompeuses.

Les purificateurs d’air UV installés dans le système d’aération (CVAC) procurant une dose germicide suffisante pour le flux d’air, détruiront les virus en suspension dans l’air, mais ne peuvent à eux seuls prémunir une personne contre une éventuelle infection virale.

Les purificateurs d’air installés à l’intérieur du système CVAC ne peuvent en aucune façon désinfecter les surfaces fréquemment touchées, telles que les poignées de porte et les interrupteurs, qui sont des voies de transmission courantes des maladies. Donc, les bonnes pratiques concernant l’hygiène et le lavage fréquent des mains continuent d’être le moyen le plus sûr de se protéger contre les contaminants en suspension dans l’air pouvant se déposer sur des surfaces ; ceux-ci pouvant aussi être introduits par d’autres occupants et ensuite dispersés par le système d’aération dans la maison.

En d’autres termes, un bon purificateur d’air UV peut réduire la possibilité de propagation des contaminants à travers le système CVAC, mais il n’élimine pas la nécessité de pratiques d’hygiène éprouvées.

Étant donné que la sensibilité aux UV germicides de tout micro-organisme est déterminée par sa séquence génomique, la dose d’UV germicide requise pour tuer le CoVid-19 est pratiquement la même que pour le SRAS-CoV (2003) avec une variance inférieure à 1,6%.

Pour plus d’informations techniques concernant le Covid-19, veuillez visiter https://bit.ly/38t12Mo (site web en anglais).

Autres articles qui pourraient vous intéresser :

Producteur de cannabis à Rigaud, Mai 2018

Le cas

Le producteur possède 3 salles de culture dans lesquelles il produit du cannabis. Le système de traitement de l’air dans chaque salle est de 5 tonnes (2 000 pcm). Il y a aussi des ventilateurs à l’intérieur de chaque salle afin de déplacer l’air.

Le problème

La production était toujours infectée de mildiou, botrytis et fusarium. Ces spores se répandaient sur quelques plants, et ainsi contaminaient le reste des plants par la circulation d’air.

Cela devenait un problème de rentabilité, car les plants de cannabis infectés devaient être jetés.

Centre de production d’intérieur

Ventilateurs

Purificateur d’air aux UV GC-Quattro

La solution personnalisée de Sanuvox

Après calcul du dimensionnement, il a été proposé d’installer une unité GC-QUATTRO dans chaque retour de chaque centrale de traitement d’air. Parce qu’un des propriétaires étaient un entrepreneur en CVAC, l’installation s’est faite facilement. Le faible entretien des unités a également été pris en compte. Entre deux productions, les salles ont été nettoyées à fond, et les pales des ventilateurs désinfectées de tous les dépôts de poussière accumulés.

Conclusion

Deux mois plus tard, le propriétaire a indiqué avoir fait une récolte complète dans ses 3 salles, avec pratiquement plus de mildiou. Il a également remarqué que plus aucun des ventilateurs le long des murs n’avait de film collant sur ses pales. Ainsi, il n’était plus nécessaire de les nettoyer avec de l’alcool.

Le producteur a inauguré une nouvelle installation plus grande dans le nord de l’Ontario : chaque unité sera équipée de la technologie SANUVOX.

Réduire les odeurs dans les salles de déchets

Réduire les odeurs dans les salles de déchets

Commerces, hôtels, condominiums et autres bâtiments sont souvent aux prises avec des odeurs désagréables qui s’échappent de leurs salles à ordures. Parfois même, ces odeurs se retrouvent dispersées dans le bâtiment par les cages d’ascenseurs ou par le système de ventilation.

Différents systèmes autonomes peuvent être utilisés pour éliminer les problèmes de prolifération bactérienne et réduire les odeurs chimiques et biologiques. L’objectif consiste à faire rapidement circuler l’air de la pièce devant les UV-C qui détruiront l’ADN des bactéries, ainsi que devant les UV-V qui oxyderont les molécules chimiques de putréfaction, tout en minimisant l’ozone résiduelle.

APPAREIL À RÉGLAGE MANUEL

Le Sanuvair® S600 :
Ce purificateur d’air UV autonome comprend une soufflante variable de 300 à 600 pcm, un préfiltre lavable en aluminium maillé pour capter les particules et 3 lampes UV-V oxydantes. Selon les besoins du client, une, deux ou trois lampes UV-V de 6,5 pouces en U sont allumées.

Dimensions maximales de la pièce à traiter : 8 000 pieds cubes.

Installation suggérée du Sanuvair® S600 :

ÉQUIPEMENT DE RÉGLAGE AUTOMATIQUE

Le Sanuvair® S300 OZD :
Ce purificateur d’air UV autonome comprend une soufflante à deux vitesses de 220/300 pcm, un préfiltre plissé de 2 pouces pour capturer les particules, une lampe en ‘J’ de 10,5 pouces UVC / UVV, et une lampe en ‘J’ de 10,5 pouces UV-V oxydante reliée par un câblage de 20 pieds à un contrôleur d’ozone réglé à 0,025 ppm. Le contrôleur échantillonnera l’air toutes les minutes et déclenchera la lampe UV-V si le seuil de 0,025 est atteint. Deux préfiltres de rechange sont également inclus.

Dimensions maximales de la pièce à traiter : 3 000 pieds cubes.

Installation suggérée du Sanuvair® S300 OZD :

Capture

Le Sanuvair® S1000 OZD :
Ce purificateur d’air UV autonome comprend une soufflante de 1 000 pcm, 2 préfiltres de 1 pouce pour capturer les particules, une lampe en ‘J’ de 16 pouces UVC / UVV, et une lampe en ‘J’ de 16 pouces UV-V oxydante reliée par un câblage de 20 pieds à un contrôleur d’ozone réglé à 0,025 ppm. Le contrôleur échantillonnera l’air toutes les minutes et déclenchera la lampe UV-V si le seuil de 0,025 est atteint.

Dimensions maximales de la pièce à traiter : 10 000 pieds cubes.

Installation suggérée du Sanuvair® S1000 OZD :

Autres articles qui pourraient vous intéresser :

À propos du CCO : oxydation photocatalytique

À propos du CCO : oxydation photocatalyste

Par Normand Brais, P.Eng., M.A.Sc., Ph.D.

Catalyseur commun à base d’oxyde de titane : TiO2

En chimie, le CCO est l’accélération d’une photoréaction en présence d’un catalyseur. Dans la photolyse catalysée, la lumière est absorbée par un substrat adsorbé. L’activité photocatalytique dépend de la capacité du catalyseur à créer des paires électrons-trous générant des radicaux libres (radicaux hydroxyles : OH) capables de subir des réactions d’oxydation. Sa compréhension est rendue possible depuis la découverte de l’électrolyse de l’eau au moyen de dioxyde de titane. L’application commerciale du procédé s’appelle Procédé d’Oxydation Avancé et est utilisé pour le traitement de l’eau.

Le dioxyde de titane, en particulier sous forme anatase, est un photocatalyseur sous lumière ultraviolette. Il a été récemment découvert que le dioxyde de titane, lorsqu’il est enrichi d’ions d’azote ou dopé avec un oxyde métallique tel que le trioxyde de tungstène, est également un photocatalyseur sous lumière visible et ultraviolette. Le fort potentiel oxydant des trous positifs oxyde l’eau pour créer des radicaux hydroxyles. Il peut également oxyder directement l’oxygène ou les matières organiques. Le dioxyde de titane est donc ajouté aux peintures, ciments, fenêtres, carreaux ou autres produits pour la stérilisation, la désodorisation et les propriétés antisalissures. Il est également utilisé comme catalyseur d’hydrolyse.

Bien que cette technologie semble parfaitement transposable dans l’air, une mise en garde importante a récemment été mise en évidence : l’oxyde de titane est «empoisonné» par la silice et sa durée de vie utile est gravement compromise. Après une expérience de longue durée de cette technologie dans l’air, il a été observé que le CCO se décomposerait progressivement et perdrait la plus grande partie de son potentiel oxydant en moins d’un an.

L’effet de la silice en tant que neutralisant d’oxyde de titane est bien connu dans le domaine des crèmes solaires. Chaque crème solaire avec bloqueur physique contient du dioxyde de titane en raison de ses fortes capacités d’absorption de la lumière UV, empêchant ainsi les rayons UV d’atteindre la peau. Les crèmes solaires conçues pour les nourrissons ou les personnes ayant la peau sensible sont souvent à base de dioxyde de titane et / ou d’oxyde de zinc, car ces bloqueurs d’UV minéraux sont moins susceptibles de causer une irritation de la peau que les ingrédients absorbant les UV, tels que l’avobenzone.

Toutefois, pour éviter la création de radicaux cancérigènes sur la peau en raison de l’activité de la réaction photocatalytique, les particules de dioxyde de titane utilisées dans les crèmes solaires sont intentionnellement revêtues de silice. L’ajout de silice neutralise efficacement les propriétés photocatalytiques de l’oxyde de titane, rendant ainsi la crème solaire inoffensive.

Comme la silice est couramment utilisée dans les applications domestiques telles que le calfeutrage et de nombreux autres matériaux, l’oxyde de titane CCO est contaminé par la silice et perdra la moitié de son activité dans les trois mois. Cela signifie qu’après 6 mois, l’efficacité sera réduite à 50%, après 9 mois jusqu’à 25%, et après un an à 12,5% seulement. Le CCO cessera alors de fournir des performances adéquates en tant que dispositif de purification de l’air. C’est la raison principale pour laquelle les entreprises sérieuses prennent maintenant du recul et remettent en cause les merveilleuses promesses du CCO à base d’oxyde de titane comme solution pour éliminer les odeurs.

Nouvelle oxydation photocatalytique au cobalt (Co-CCO)

Depuis vingt ans, l’utilisation des rayons ultraviolets pour obtenir des ressources en air et en eau propres grâce à l’oxydation photocatalytique est un objectif recherché par les scientifiques du monde entier (1,2,3). La photocatalyse est un terme largement générique qui s’applique à la réaction d’oxydation chimique permise par un catalyseur activé aux photons, communément appelé CCO dans l’industrie de la purification de l’air.

Le catalyseur CCO consiste en un semi-conducteur en oxyde métallique, généralement en oxyde de titane (TiO2), doté d’une énergie de rupture permettant à l’absorption de photons ultraviolets de générer des paires de trous d’électrons appelés «sites actifs» qui peuvent initier la réaction chimique. Pour le CCO en oxyde de titane, l’énergie de rupture est centrée sur les photons à 360 nm, ce qui se situe au milieu de la plage UV-A (315 à 400 nm). Ceci est assez éloigné des émissions UV-C des lampes germicides ordinaires émettant la majeure partie de leur énergie photonique à une longueur d’onde de 254 nm. Ceci explique en partie l’efficacité plutôt décevante des purificateurs actuels d’air CCO à base d’oxyde de titane utilisant des lampes au mercure à basse pression. Cette faible efficacité est principalement responsable de la formation de sous-produits dangereux, tels que le formaldéhyde. Un autre obstacle important à la mise en œuvre du CCO est sa courte durée de vie due à l’empoisonnement du catalyseur par la silice. La silice, constituant principal du sable, est omniprésente dans notre environnement quotidien. Les siloxanes ont été identifiés comme la cause fondamentale de la désactivation actuelle de la CCO (4). Comme la désactivation réduit le nombre de sites actifs disponibles, une oxydation incomplète devient prédominante, ce qui favorise la production de sous-produits.

L’effet fondamental de l’ajout d’oxyde de cobalt est de décaler l’énergie de rupture du catalyseur vers les photons de haute énergie au plus près des photons à 254 nm émis par les lampes à mercure à basse pression. Avec une capacité d’absorption d’énergie supérieure, le catalyseur renforcé au cobalt fournit une activité photocatalytique suffisante pour oxyder complètement les COV domestiques (5,6) et éviter la formation transitoire de formaldéhyde, d’acétaldéhyde et d’autres sous-produits incomplètement oxydés. Il convient de noter que la haute énergie de rupture active du catalyseur au cobalt est beaucoup plus large que l’oxyde de titane lui-même et s’est révélée presque insensible à l’intoxication par la silice. Les essais réels n’ont montré aucune baisse significative de l’activité des catalyseurs au cobalt après une année complète d’utilisation.

Références

  1. Peral,J.; Ollis, D.F. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone,1-butanol, butyraldehyde,formaldehyde,and m-xylene oxidation. J.Catal. 1992, 136, 554-565.
  2. Dibble, L.; Raupp, G. Kinteics of the gas-solid heterogeneous photocatalytic oxidation of trichloroethylene by near UV illuminated titanium oxide. Catal. Lett., 1990,4, 345-354.
  3. Pichat,P.; Disdier, J.; Hoang-Van, C.; Mas, D.;Goutallier, G.; Gaysee, C. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal today 2000, 63, 363-369.
  4. Warner, N.A.; Evenset, A.; Christensen, G., Gabrielsen, G.W.; Borga, K.; Leknes, H. Volatile siloxanes in the European arctic: Assessment of sources and spatial distribution. Env iron. Sci. Technol., 2010,4,7705-7710.
  5. Building Assessment Survey and Evaluation (BASE) study. Available online: http://www.epa.gov/iaq/base/index.html
  6. Hay, S.; Obee, T.; Luo, Z.; Jiang, T.;Meng, Y.; He, J.;Murphy, S.; Suib,S. The viability of photocatalysis for air purification. Molecules, 2015, 20, 1319-1356.

Suppression des odeurs de fumée de tabac ambiante

Suppression des odeurs de fumée de tabac ambiante

Par Normand Brais, P.Eng., M.A.Sc., Ph.D.

INTRODUCTION

Il est particulièrement difficile d’éliminer les particules de fumée de tabac, non pas à cause de leur petite taille (0,1 à 1 micron), mais parce qu’elles sont recouvertes de goudron, de nicotine, de phénols et de nombreux autres composés odorants. Ils peuvent rester en suspension dans l’air pendant des heures après l’arrêt du tabac.

En raison de leur revêtement en aérosol, les particules de fumée de tabac ne sont pas sèches, mais plutôt collantes, et obstrueront inévitablement la surface de tout type de filtres à air, ce qui les rend rapidement inefficaces et exclut la solution de filtration simple. Leur caractère collant fait que les particules de fumée s’accrochent aux murs, aux tapis, aux tissus et aux vêtements, imprégnant ainsi l’environnement d’une odeur désagréable et durable.

Cet article décrit ces défis techniques et explore d’un point de vue fondamental l’utilisation appropriée du procédé de photooxydation par ultraviolets comme solution pour éliminer les odeurs causées par la fumée de tabac ambiante.

COMPOSITION DE LA FUMÉE DE CIGARETTE

Des études ont montré que la fumée de cigarette contient plus de 3 800 composés chimiques. Certains de ces composés sont présentés dans le tableau 1 ci-dessous. Les aérosols de fumée de cigarette sont essentiellement des gaz condensables résultant d’une combustion incomplète. La combustion étant un processus d’oxydation, ces aérosols peuvent être rendus moins collants et transformés en cendres sèches en complétant leur oxydation. Leurs odeurs disparaîtraient même si elles pouvaient être complètement oxydées en vapeur d’eau et en dioxyde de carbone, composés inodores. Si l’on pouvait attirer le nuage de fumée directement dans la chambre de combustion d’un incinérateur industriel à 850°C pendant deux secondes, le cocktail de molécules odorantes figurant dans le tableau 1 serait complètement oxydé et par conséquent sans odeur. Bien que cela fonctionnerait parfaitement, cette solution n’est évidemment pas rentable.

 

Tableau 1. Composition chimique de la fumée de cigarette

Durée de la production de fumée (sec)20 sec550 sec
Caractéristiques ou composition
Fumée principale
Fumée secondaire
Particules (nombre par cigarette)1.05E+123.50E+12
a) Particules solides et aérosols
(mg/cigarette)(mg/cigarette)
Goudron20.8044.10
Nicotine0.921.69
Benzo (a) pyrène3.50E-051.35E-04
Pyrène2.70E-041.01E-03
Fluoranthène2.72E-041.26E-03
Benzo (a) fluorène1.84E-047.51E-04
Benzo (b/c) fluorène6.90E-052.51E-04
Chrysène, benz (a) anthracène1.91E-041.22E-03
Benzo (b,k,j) fluorenthrène4.90E-052.60E-04
Benzo (e) pyrène2.50E-051.35E-04
Perylène9.00E-063.90E-05
Dibenz (a,j) anthracène1.10E-054.10E-05
Dibenz (a,h) anthracène, idéno-(2,3) pyrène3.10E-051.04E-04
Benzo (g,h,i) pérylène3.90E-059.80E-05
Anthanthrène2.20E-053.90E-05
Phénols (total)2.28E-016.03E-01
Cadmium1.25E-044.50E-04
Polonium 210, pCi7.00E-021.30E-01
b) Gaz et vapeurs
(mg/cigarette)(mg/cigarette)
Eau7.50298.00
Monoxyde de carbon18.3086.30
Ammoniac0.167.40
Dioxyde de carbone63.5079.50
NOx0.0140.051
Cyanure d’hydrogène0.2400.160
Acroléine0.0840.000
Formaldéhyde0.0001.440
Toluène0.1080.600
Acétone0.5781.450

Source : “Introduction to indoor air quality: a reference manual, EPA/40013-91/003”

 

FILTRATION DE L’AIR ET LIMITES DE L’IONISATION CONTRE LA FUMÉE DE TABAC

L’analyse du tableau 1 montre que la filtration seule ne peut pas traiter les aérosols de fumée de cigarette. L’expérience a montré que les particules de très petite taille, inférieure au micron, nécessitent des filtres HEPA coûteux, qui se recouvrent de goudron et se bouchent par conséquent très rapidement.

Outre la filtration classique, il existe un autre moyen bien connu d’éliminer les particules submicroniques de l’air. Les filtres à air électrostatiques, également appelés ioniseurs d’air, ont cette capacité. Au lieu de capturer mécaniquement les particules comme des filtres classiques, le principe de la filtration électrostatique ou électronique consiste à charger électriquement les particules afin qu’elles migrent sous l’effet de forces électriques vers les surfaces voisines. Le même effet est obtenu en frottant un ballon sur une chevelure, puis en le collant à un mur. Au bout d’un certain temps, le ballon perd sa charge et retombe sur le sol.

Beaucoup de «mangeurs de fumée» utilisent le principe électrostatique pour collecter les particules de fumée sur des plaques métalliques. L’effet des ioniseurs sur les particules de fumée dans l’air est le même, à l’exception du fait qu’ils n’ont pas de plaque collectrice et que les particules chargées finissent ainsi par coller sur les murs et les surfaces de la pièce. Il est à noter que, puisque les particules de cigarette sont collantes avec du goudron, elles recouvriront toutes les surfaces de la pièce avec une odeur de goudron jaune-brun.

Les expériences avec des ioniseurs sur de petits volumes, comme un pot, sont assez concluantes : les particules de fumée d’une cigarette peuvent être facilement dispersées vers les parois du pot en 15 à 20 secondes. Toutefois, lorsque vous répétez la même expérience sur un volume plus important, comme dans une pièce de 3 m x 3 m x 3 m, le temps nécessaire pour purifier l’air de la même quantité de fumée peut atteindre plusieurs heures !

L’explication de cette perte d’efficacité lorsque la taille de la pièce augmente est enracinée dans la physique fondamentale des forces électrostatiques : la loi de Coulomb, qui stipule que les forces électriques entre les particules chargées diminuent avec le carré de leur distance. La loi de Coulomb implique que, lorsque la distance est doublée, la force électrique est réduite d’un facteur 4. En comparant les forces électriques du petit pot, où les particules se trouvent à moins de quelques centimètres les unes des autres, de celles d’un mur d’une pièce de quelques mètres de large, les forces électrostatiques responsables de la dispersion des particules de fumée sont réduites au carré du rapport de 1 mètre à 1 centimètre soit le carré de 100 ou 10 000 fois moins de force électrique !

Ceci explique fondamentalement pourquoi une expérience basée sur la suppression du même nombre de particules de fumée dans une pièce de taille normale prend plusieurs heures (plus de 10 000 secondes), alors que les anciennes vidéos de démonstration réalisées avec un pot de la taille d’une main prennent quelques secondes. Non seulement l’ionisation à l’air ne supprime pas les odeurs dues aux effets de revêtement du goudron sur les surfaces et les murs, mais leurs actions électrostatiques sont beaucoup trop lentes pour avoir un effet nettoyant important, sauf dans un petit pot. En plus de leur inefficacité, le fait que les surfaces des pièces deviennent gommeuses au fur et à mesure qu’elles accumulent les particules de goudron chargées électriquement, au lieu d’utiliser des plaques de capture internes nettoyables comme dans toutes les unités de traitement de la fumée électrostatiques, les ioniseurs d’air sont en fait une version mal conçue de mangeur de fumée électrostatique et une mauvaise idée générale.

EFFET DE LA LUMIÈRE ULTRAVIOLETTE SUR LA FUMÉE DE CIGARETTE

Lorsque les photons de lumière ultraviolets UV-C frappent une molécule de goudron ou de nicotine, ils transportent suffisamment d’énergie pour rompre les liaisons chimiques interatomiques et briser la molécule en plusieurs molécules plus petites. L’énergie des photons UV germicides à la longueur d’onde de 254 nm est de 470 kJ/mol, une énergie supérieure à celle de toutes les liaisons chimiques énumérées dans le tableau 2. En comparaison, la lumière visible d’une longueur d’onde moyenne de 550 nm a une énergie de photons de seulement 217 kJ/mol.

Il est donc tout à fait clair que certaines liaisons au sein des molécules de goudron, de nicotine et de phénols dans la fumée peuvent être décomposées par irradiation UV-C mais pas par la lumière visible.

 

Tableau 2. Force des liaisons chimiques4

Liaisons chimiques
Énergie moyenne des liaisons chimiques (kJ/mol)
C – C 347
C – H 413
C – N 305
C – O 358
C – S 259
 N – H 391

Par conséquent, les liaisons chimiques entre les atomes de carbone et les atomes d’hydrogène, d’azote, d’oxygène et de soufre seront décomposées par les photons ultraviolets UVC, résultant en des fragments brisés de molécules. Suite à ce processus, les molécules brisées peuvent maintenant être oxydées davantage pour achever leur combustion et réduire leur potentiel olfactif.

Cette oxydation peut être accomplie en utilisant un ultraviolet de plus haute énergie d’une longueur d’onde de 185 nm appelée UVV, où le deuxième V représente Vacuum. Les photons UVV ont une énergie de 645 kJ/mol, mais ne peuvent pas se propager dans le vide car la molécule de dioxygène dans l’air l’absorbe et se décompose en oxygène monoatomique. À la pression atmosphérique normale, les photons UVV sont presque totalement absorbés à moins de 5 mm d’une source UVV standard d’une lampe à quartz au mercure. Ces atomes d’oxygène libres générés par la lumière UVV sont alors capables de réagir et de compléter l’oxydation des molécules de goudron, de nicotine et de phénols décomposées.

Les produits finaux de ce processus de photo-oxydation sont alors des particules de cendres sèches non collantes qui peuvent maintenant être capturées par des filtres standard adéquats. De cette façon, les odeurs sont éliminées par le processus d’oxydation et les particules sèches résultantes sont éliminées par filtration.

Le dimensionnement approprié pour éviter de surdimensionner le système de photooxydation est de la plus haute importance. En l’absence de réaction, les atomes d’oxygène O* générés par les UVV* réagissent avec les molécules de dioxygène O2 pour produire de l’ozone O3, un autre composé indésirable. L’ozone n’est pas une molécule stable et se décompose naturellement en dioxygène normal à la température ambiante dans les 20 à 30 minutes suivant l’humidité relative. La limite OSHA pour une exposition de 8 heures est de 0,05 ppm d’ozone. Étant donné que le taux de génération et le taux de décomposition de l’ozone en l’absence de fumée ou d’autres contaminants volatils dans une pièce de taille donnée à une température ambiante, ainsi que les taux de ventilation, peuvent tous être calculés correctement, il est possible de dimensionner un système de photooxydation par ultraviolets qui ne dépassera jamais la limite de sécurité OSHA.

CONCLUSION

Cet article a décrit en détail la nature et la composition de la fumée de cigarette et les inconvénients inhérents à la filtration classique et aux filtres électrostatiques ou aux ioniseurs d’air. De nombreuses années d’études expérimentales fondées sur des calculs basés sur la composition chimique de la fumée de cigarette montrent que l’odeur de la fumée de cigarette ne peut être éliminée sans modifier la structure des molécules responsables des odeurs, qui sont essentiellement le goudron, la nicotine et les phénols. Outre l’incinération thermique, la photooxydation par ultraviolets s’est révélée être le moyen le plus efficace d’y parvenir en dégradant et en oxydant ces molécules. Leur oxydation rend les particules de fumée sèches et non collantes, ce qui en fait des candidats acceptables pour la filtration standard. Il faut prendre soin de bien concevoir le système de photooxydation par ultraviolets en ce qui concerne la taille de la pièce et les taux de ventilation, afin de maintenir l’ozone résiduel potentiel dans les limites de l’OSHA, lorsque la pièce traitée ne contient plus de fumée de tabac.

REMERCIEMENTS

L’auteur est reconnaissant à Francisco Doyon P.Eng. et Grégory Clément P.Eng. d’avoir partagé leurs données expérimentales sur l’effet des ioniseurs d’air sur la fumée de tabac ambiante à l’intérieur de pièces de taille variable.

Références

  1. C.N. Davies, Cigarette smoke: generation and properties of the aerosol, J.Aerosol Sci. Vol 19, No.4, pp463-469, 1988.
  2. Hays, Gobbell, Ganick, Indoor Air Quality, McGraw-Hill,1995, p.58.
  3. Spengler, Samet, McCarthhy, Indoor Air Quality Handbook. McGraw-Hill, 2001.
  4. UWaterloo, Bond Lengths and Energies. n.d. Web. 21 Nov 2010.
  5. http://www.science.uwaterloo.ca/~cch…20/bondel.html EPA. Reference Guide to Odor Thresholds for Hazardous Air Pollutants Listed in the Clean Air Act Ammendments of 1990.
  6. EPA/600/R-92/047, March 1992.

Autres articles qui pourraient vous intéresser :

Désinfecter les vestiaires et les toilettes

Désinfecter les vestiaires et les toilettes

Les odeurs que l’on retrouve dans les vestiaires sont en grande partie le résultat de la transpiration. La transpiration est au départ inodore. Ce sont les bactéries présentées à la surface de la peau, notamment sur les zones pileuses comme les aisselles ou enfermées comme les pieds, qui vont être responsables dans des effluves désagréables, lesquelles seront disséminées dans les serviettes, les équipements et autres matériaux absorbants.

Le Sanuvair® S300 de Sanuvox est la solution idéale pour réduire et éliminer les odeurs désagréables des vestiaires de moyenne dimension. Le processus breveté de Sanuvox purifie l’air en stérilisant les bactéries et les virus toute en oxydant les odeurs chimiques. Résultat : une différence qui sent !

Le préfiltre et le filtre HEPA capturent les particules jusqu’à 0,03 microns. Le processus breveté éradique les bio-contaminants, tels que les moisissures, les bactéries, les virus, les germes et les allergènes, et détruit les odeurs chimiques et biologiques.

ÉQUIPEMENTS UTILISÉS

Unité de ventilation autonome doté d’une soufflante et d’une lampe avec deux zones : une zone UV-C germicide, et une zone UV-V oxydante « modulable ». L’unité peut être aussi utilisée sur des conduits ronds de 8’’ flexibles ou rigides ou simplement accrochée au mur et dotée de grilles d’admission et de sortie.

PRINCIPE DE FONCTIONNEMENT

L’air vicié est aspiré d’un côté, purifiée devant la lampe UV germicide / UV oxydante, puis rejeté de l’autre côté. En recirculant l’air de la pièce en continu, on élimine la faune bactérienne aéroportée ainsi que les odeurs chimiques, améliorant ainsi la qualité d’air pour les occupants.

DIMENSIONNEMENT
Il faut prévoir de 4 à 6 changements d’air par heure.
• Une unité P900 avec une lampe UV-C/UV-V sera suffisante pour une salle de 1 200 pi3, soit approximativement 15’ x 10’ x 8’.
• Une unité Sanuvair® S300 avec une lampe UV-C/UV-V sera suffisante pour un local de 4 500 pi3, soit approximativement 25’ X 20’ X 10’.
• Une unité Sanuvair® S1000 avec une lampe UV-C/UV-V sera suffisante pour un local de 15 000 pi3, soit approximativement 50’ X 20’ X 15’.
L’unité comprend 2 entrées et 2 sorties d’air de 8 pouces Elle devra être fixée au mur, si possible à un endroit central. Sauf pour l’unité portable P900, les purificateurs peuvent être installés dans l’entre-plafond ou dans une pièce voisine et canalisée avec des tuyaux ronds de 8 pouces.

LES PARTICULARITÉS
Les unités de base comprennent une lampe en « J » de longueur différente, mais possédant toutes une section UV-V oxydante minimale. Pour des cas spéciaux où les odeurs sont plus concentrées, il est possible de doter les unités (sauf l’unité P900) de lampes ayant une plus grande section oxydante afin de « moduler » directement sur site la quantité d’oxydation requise.

LES INSTALLATIONS POSSIBLES

De nombreux bâtiments et établissements peuvent être équipés de ces unités de purification, tels que les chambres de sportifs (hockey, football), les centres de conditionnement physique, les salles de lavage, et les sous-sols.

Autres articles qui pourraient vous intéresser :

Combattre la fumée de cigarettes

Combattre la fumée de cigarettes

Les espaces réservés aux fumeurs, quoique souvent isolés des endroits publics, causent souvent des problèmes lorsque les odeurs se répandent à l‘intérieur. De plus, l’accumulation de fumée dans ces endroits réservés peut pousser certains fumeurs à s’en éloigner, alimentant alors d’autres situations problématiques.

Différentes solutions pour remédier à ces problèmes de fumée sont proposées par Sanuvox. En effet, installer des systèmes de purification de l’air permet de traiter l’air de ces pièces et d’éliminer les odeurs et la fumée, ainsi que la nicotine produite.

Contrairement à ses concurrents, Sanuvox n’utilise pas de coûteux filtres au charbon activé qui s’imprègnent rapidement de nicotine et de goudron. Le processus UV breveté réduit les odeurs et cristallise les gouttelettes de nicotine, lesquelles se retrouvent en poudre fine sur les filtres. Un taux de recirculation de 6 à 8 fois l’heure permet de choisir l’équipement approprié aux dimensions de la pièce.

ÉQUIPEMENTS UTILISÉS

Les unités de purification d’air aux UV autonomes sont dotées d’une soufflante de 300 ou 1000 cfm, de préfiltres pour protéger la soufflante, de lampes deux zones UV-C germicide et UV-V oxydante, doublée d’une lampe tout oxydante reliée à un détecteur de COV (composés volatils organiques).

PRINCIPE DE FONCTIONNEMENT

L’unité purifie l’air de la pièce avec la lampe régulière 2 zones UV-C/UV-V. Lorsque le niveau de fumée augmente, conséquence de l’ajout de fumeurs dans la pièce, le détecteur de COV déclenche alors la seconde lampe oxydante pour une durée d’une minute, puis l’éteint. Ce cycle recommence à chaque minute tant que le niveau de polluant est élevé. Lorsque la concentration de fumée est réduite, le détecteur éteint la lampe oxydante laissant la lampe régulière terminer le travail.

COMPRENDRE LA CHIMIE

La fumée de cigarette ou de cigare est généralement composée de :

  • Cendres en suspension
  • Gouttelettes de nicotine
  • Composés chimiques

La cendre sera captée sur les filtres. Les gouttelettes de nicotine seront asséchées par les rayons ultraviolets et se retrouveront sous forme de poudre jaune sur les filtres. Quant aux composés chimiques, ils seront oxydés par le procédé photolytique des ultraviolets : les rayons UV de hautes fréquences sont suffisamment énergétiques pour activer les molécules organiques et accélérer les réactions chimiques d’oxydation dans l’air. Les odeurs sont oxydées par le procédé de photolyse qui amorce la rupture des liaisons chimiques par l’action de la lumière ultraviolette. Les contaminants chimiques organiques sont donc décomposés et rendus inoffensifs en CO2 et H2O.

DIMENSIONNER L’ÉQUIPEMENT
Il faut prévoir de 6 à 8 changements d’air par heure. On réduit ainsi la norme d’apport d’air frais des deux tiers.

Une unité Sanuvair® S300 (de 300 cfm) sera suffisante pour un local de 2 400 pi3(12 X 20 X 10) pour 7,5 changements à l’heure.

Une unité Sanuvair® S1000 (1000 cfm) sera suffisante pour un local de 9 600 pi3 (24 X 40 X 10) pour 6,25 changements à l’heure.

LES INSTALLATIONS POSSIBLES

De nombreux bâtiments et établissements peuvent être équipés d’unités de purification de l’air pour lutter contre la fumée de tabac, tels que les CHSLD, les résidences privées, les salles de Poker, les bingos amérindiens, ou les bars à cigares.

Autres articles qui pourraient vous intéresser :