Efficacités des purificateurs d’air aux UV de Sanuvox contre les virus

Efficacités des purificateurs d'air aux UV de Sanuvox contre les virus

La société Sanuvox, un chef de file nord-américain depuis 25 ans en désinfection de l’air et des surfaces, tient à mettre en garde les personnes tentées d’acheter des purificateurs d’air ou d’autres appareils contre d’éventuelles allégations qui pourraient s’avérer trompeuses.

Les purificateurs d’air UV installés dans le système d’aération (CVAC) procurant une dose germicide suffisante pour le flux d’air, détruiront les virus en suspension dans l’air, mais ne peuvent à eux seuls prémunir une personne contre une éventuelle infection virale.

Les purificateurs d’air installés à l’intérieur du système CVAC ne peuvent en aucune façon désinfecter les surfaces fréquemment touchées, telles que les poignées de porte et les interrupteurs, qui sont des voies de transmission courantes des maladies. Donc, les bonnes pratiques concernant l’hygiène et le lavage fréquent des mains continuent d’être le moyen le plus sûr de se protéger contre les contaminants en suspension dans l’air pouvant se déposer sur des surfaces ; ceux-ci pouvant aussi être introduits par d’autres occupants et ensuite dispersés par le système d’aération dans la maison.

En d’autres termes, un bon purificateur d’air UV peut réduire la possibilité de propagation des contaminants à travers le système CVAC, mais il n’élimine pas la nécessité de pratiques d’hygiène éprouvées.

Étant donné que la sensibilité aux UV germicides de tout micro-organisme est déterminée par sa séquence génomique, la dose d’UV germicide requise pour tuer le CoVid-19 est pratiquement la même que pour le SRAS-CoV (2003) avec une variance inférieure à 1,6%.

Pour plus d’informations techniques concernant le Covid-19, veuillez visiter https://bit.ly/38t12Mo (site web en anglais).

Réduire les odeurs dans les salles de déchets

Réduire les odeurs dans les salles de déchets

Commerces, hôtels, condominiums et autres bâtiments sont souvent aux prises avec des odeurs désagréables qui s’échappent de leurs salles à ordures. Parfois même, ces odeurs se retrouvent dispersées dans le bâtiment par les cages d’ascenseurs ou par le système de ventilation.

Différents systèmes autonomes peuvent être utilisés pour éliminer les problèmes de prolifération bactérienne et réduire les odeurs chimiques et biologiques. L’objectif consiste à faire rapidement circuler l’air de la pièce devant les UV-C qui détruiront l’ADN des bactéries, ainsi que devant les UV-V qui oxyderont les molécules chimiques de putréfaction, tout en minimisant l’ozone résiduelle.

APPAREIL À RÉGLAGE MANUEL

Le Sanuvair® S600 :
Ce purificateur d’air UV autonome comprend une soufflante variable de 300 à 600 pcm, un préfiltre lavable en aluminium maillé pour capter les particules et 3 lampes UV-V oxydantes. Selon les besoins du client, une, deux ou trois lampes UV-V de 6,5 pouces en U sont allumées.

Dimensions maximales de la pièce à traiter : 8 000 pieds cubes.

Installation suggérée du Sanuvair® S600 :

ÉQUIPEMENT DE RÉGLAGE AUTOMATIQUE

Le Sanuvair® S300 OZD :
Ce purificateur d’air UV autonome comprend une soufflante à deux vitesses de 220/300 pcm, un préfiltre plissé de 2 pouces pour capturer les particules, une lampe en ‘J’ de 10,5 pouces UVC / UVV, et une lampe en ‘J’ de 10,5 pouces UV-V oxydante reliée par un câblage de 20 pieds à un contrôleur d’ozone réglé à 0,025 ppm. Le contrôleur échantillonnera l’air toutes les minutes et déclenchera la lampe UV-V si le seuil de 0,025 est atteint. Deux préfiltres de rechange sont également inclus.

Dimensions maximales de la pièce à traiter : 3 000 pieds cubes.

Installation suggérée du Sanuvair® S300 OZD :

Capture

Le Sanuvair® S1000 OZD :
Ce purificateur d’air UV autonome comprend une soufflante de 1 000 pcm, 2 préfiltres de 1 pouce pour capturer les particules, une lampe en ‘J’ de 16 pouces UVC / UVV, et une lampe en ‘J’ de 16 pouces UV-V oxydante reliée par un câblage de 20 pieds à un contrôleur d’ozone réglé à 0,025 ppm. Le contrôleur échantillonnera l’air toutes les minutes et déclenchera la lampe UV-V si le seuil de 0,025 est atteint.

Dimensions maximales de la pièce à traiter : 10 000 pieds cubes.

Installation suggérée du Sanuvair® S1000 OZD :

Autres articles qui pourraient vous intéresser :

Cause fondamentale de l’odeur générée par la désinfection germicide UV avec des unités mobiles

Cause fondamentale de l'odeur générée par la désinfection germicide UV avec des unités mobiles

Par Normand Brais, P.Eng., M.A.Sc., Ph.D. et Benoit Despatis, Eng., Membre ASHRAE

INTRODUCTION

Au fil des années, de nombreux utilisateurs ont souvent remarqué que, chaque fois qu’une désinfection germicide UV de surface est effectuée dans une pièce, il reste presque toujours une odeur étrange. Ce n’est pas l’odeur de l’ozone, qui peut être facilement identifiée et mesurée. Cela ressemble plus à une odeur légèrement piquante semblable à celle des œufs pourris ou des cheveux brûlés. En fait, il est plus facile de reconnaître l’odeur que de la décrire. Jusqu’à présent, aucune explication satisfaisante sur l’origine de cette odeur particulière n’a été fournie. Plusieurs hypothèses de travail ont été explorées pour expliquer ce phénomène délicat :

1) Dégagement gazeux des surfaces murales, telles que peinture ou autres matières volatiles.

2) Colle des bouchons de lampes UV dégageant des gaz.

3) Connecteurs de lampes UV ou embouts en caoutchouc en surchauffe.

4) Interaction des UV avec les poussières en suspension dans l’air et en surface.

Après plusieurs tests et expériences, les trois premières hypothèses ont rapidement été écartées comme cause potentielle. Les dégagements gazeux de peinture ont été éliminés après des essais dans un boîtier métallique en aluminium nu, témoignant de la même odeur.

Les embouts des lampes UV ont été complètement enlevés et toute la colle nettoyée sans effet. La même chose a été faite pour les connecteurs de lampes et n’a montré aucun impact sur l’odeur. Cependant, alors que nous effectuions ces tests, il a été noté que, lorsque les cycles de désinfection étaient répétés plusieurs fois dans le même local, le niveau d’odeur perçu après chaque cycle semblait diminuer. C’est ce qui nous a amenés à nous concentrer sur la présence de particules de poussière dans l’air, sur la composition de ces particules et sur la manière dont les UV pourraient les transformer en composés odorants perceptibles.

COMPOSITION DE LA POUSSIÈRE DANS L’AIR

La poussière en suspension dans l’air des maisons, des bureaux et d’autres environnements humains contient généralement jusqu’à 80% de peau humaine morte et de poils squameux, le reste étant constitué de petites quantités de pollen, de fibres textiles, de fibres de papier, de minéraux provenant de sols extérieurs et de nombreux autres microns matériaux qui peuvent être trouvés dans l’environnement immédiat1,2. Dans un environnement intérieur typique, la charge volumétrique des poussières en suspension dans l’air est comprise entre 100 et 10 000 μg/m3 (0,000044 à 0,0044 grain/pi3). La charge de poussière dépend du taux d’occupation, du type d’activité humaine, de l’efficacité du système de filtration de l’air, etc. Il est à noter que le niveau maximum acceptable d’ASHRAE pour la poussière totale est de 10 000 µg/m3 (0,0044 grain/pi3) et de 3 000 µg/m3. (0,0013 grain/pi3) pour PM10.

Étant donné que la poussière en suspension dans l’air est essentiellement de la peau humaine morte et des mèches de cheveux squameuses, il convient de regarder de plus près le matériau fondamental dont elles sont faites. Le constituant principal de la peau humaine est un groupe moléculaire appelé kératine. La kératine est une famille de protéines structurelles fibreuses. La kératine est le matériau structurel clé constituant la couche externe de la peau humaine. C’est également l’élément clé de la structure des cheveux et des ongles. Les monomères de kératine s’assemblent en faisceaux pour former des filaments intermédiaires durs et insolubles. La kératine renferme de grandes quantités de cystéine, un acide aminé contenant du soufre, nécessaire aux ponts disulfures, qui confèrent une résistance et une rigidité supplémentaires par réticulation permanente et thermiquement stable ; rôle que jouent également les ponts soufrés dans le caoutchouc vulcanisé. Les cheveux sont constitués d’environ 14% de cystéine. La cystéine3 est un acide aminé de formule chimique HO2CCH (NH2) CH2SH. L’odeur âcre de poils brûlants et de caoutchouc est due aux sous-produits du soufre. La composition moyenne des cheveux consiste en 45,2% de carbone, 27,9% d’oxygène, 6,6% d’hydrogène, 15,1% d’azote et 5,2% de soufre.4

INTERACTION DES UVC AVEC LA KÉRATINE ET LA CYSTÉINE

Lorsque les photons de lumière UV-C à haute énergie frappent une molécule de kératine / cystéine, ils ont le pouvoir de casser leurs liaisons chimiques internes et de les briser en molécules plus petites. L’énergie des photons UV germicides à la longueur d’onde de 254 nm est de 470 kJ/mol, une valeur supérieure à celle des liaisons chimiques énumérées dans le tableau 1. Il est donc clair que les molécules protéomiques, telles que la kératine et la cystéine, peuvent être dissociées par l’irradiation des UV germicides, mais pas par la lumière visible, pour laquelle la longueur d’onde moyenne est de 550 nm et l’énergie maximale des photons de 217 kJ/mol.

Tableau 1. Force des liaisons chimiques

Liaison chimique

Énergie moyenne des liaisons chimiques (kJ/mol)

C – C347
C – H413
C – N305
C – O358
C – S259
N – H391

Par conséquent, certaines des liaisons chimiques entre les atomes de carbone et les atomes d’hydrogène, d’azote, d’oxygène et de soufre seront brisées par les photons ultraviolets germicides. Certains des fragments de molécules produits à la suite du bombardement de photons UV suffisamment intense contiendront du soufre, et entreront donc dans une catégorie appelée molécules de thiol. Les thiols sont une famille de composés soufrés également appelés mercaptans. Leur seuil d’odeur est extrêmement bas. Le nez humain peut détecter des thiols à des concentrations aussi faibles que 1 partie par milliard. L’odeur des œufs pourris et de l’ail est une caractéristique dominante des mercaptans, comme le montre le tableau 2.

Lorsque la peau brûle, elle dégage une odeur similaire à celle des thiols, tandis que mettre le feu aux cheveux émet une odeur sulfureuse. En effet, la kératine présente dans nos cheveux contient de grandes quantités de cystéine, un acide aminé soufré. L’odeur des cheveux brûlés peut persister dans le nez pendant des jours.

Tableau 2.

Seuil sensoriel rapporté pour les composés thiol / soufre6

Nom du composé
Formule chimique
Description sensorielle
Seuil d’odeur (ppb)
Sulfure d’hydrogèneH2SŒuf pourri, eaux usées0.5 – 1.5
ÉthylmercaptanCH3CH2SHAllumette brûlée, sulfuré, terreux1.1 – 1.8
MéthylmercaptanCH3SHChou pourri, caoutchouc brûlé1.5
Sulfure de diéthyleCH3CH2SCH2CH3 Caoutchouteux0.9 – 1.3
Sulfure de diméthyleCH3SCH3 Maïs en conserve, choux cuit, asperge17 – 25
Disulfure de diéthyleCH3CH2SSCH2CH3Ail, caoutchouc brûlé3.6 – 4.3
Disulfure de diméthyleCH3SSCH3 Végétal, choux, oignon intense9.8 – 10.2
Disulfure de carboneCS2 Sucré, éthéré, légèrement vert, sulfuré5

CALCUL DE LA CONCENTRATION DANS L’AIR DES COMPOSÉS DE SOUFRE RÉSULTANTS

Afin de confirmer l’hypothèse liant l’origine de l’odeur de désinfection post-UV à la présence de kératine et de cystéine dans la poussière de l’air, un simple calcul de la concentration moléculaire a été effectué.


Compte tenu de la charge de poussière, et en supposant que cette poussière se compose de 80% de peau ou de cheveux, les deux contenant environ 5% de soufre qui seront finalement décomposés par UV en molécules de thiol les plus petites, telles que méthylmercaptan, éthylmercaptan ou même sulfure d’hydrogène, la concentration en thiol peut être estimée comme suit :

où :

Dustload = poids de poussière par unité de volume d’air en μg/m3 (lb/ft3)

SK = % de soufre dans la kératine/cystéine = 5%

%Skin_Hair = fraction de peau et de cheveux dans la poussière = 80%

ρThiol = densité de méthylmercaptan à température et pression ambiantes normales = 1,974 kg/m3 (0,1232 lb/ft3)

L’équation (1) montre que lorsque la charge de poussière en suspension dans l’air dépasse 75 µg/m3 (0,000033 grain/pi3), ce qui est souvent le cas dans des espaces occupés, le niveau de thiol généré par la fragmentation des protéines de kératine dépasse le seuil olfactif de 0,5 à 1,5 ppb. Il en résulte que même dans le cas d’un environnement relativement propre avec une charge de poussière aussi faible que 100 µg/m3 (0,000044 grain/pi3), les conséquences du processus de désinfection par UV produiront une concentration de 2 parties par milliard, ce qui est supérieur au niveau de seuil olfactif, laissant ainsi une odeur perceptible. Tracer un graphique de l’équation 1 et permettre à la charge de poussière d’aller jusqu’à 1 000 μg/m3 (0,00044 grain/ft3) montre que, sauf si la poussière ne contient pas beaucoup de peau morte ou de squames pileuses, la désinfection par UV d’une pièce laissera presque toujours derrière elle une concentration en thiol supérieure au seuil olfactif.

Figure 1. Concentration en thiol en ppb par rapport à la charge de poussière

Avec des charges acceptables de niveau de poussière en suspension dans l’air maximales de 10 000 μg/m3 (0,0044 grain/pi3) selon ASHRAE, la concentration en thiol pourrait atteindre 200 ppb après désinfection par UV. Selon l’Institut national américain pour la sécurité et la santé au travail7 (NIOSH), le niveau de danger pour la vie ou la santé de méthylmercaptan est de 150 ppm, soit 150 000 ppb. En outre, selon la CSST du Québec et selon OSHA8 (Administration de la sécurité et de la santé au travail), le niveau acceptable TLV-TWA (valeur limite pondérée – valeur pondérée dans le temps) pour une exposition de 8 heures est de 0,5 ppm, soit 500 ppb. Par conséquent, les niveaux potentiels de concentration en thiol générés par la désinfection par UV sont sans danger, même lorsque le niveau acceptable de poussière en suspension dans l’air est le plus élevé.

CONCLUSION

Étant donné que l’occupation humaine génère normalement des concentrations de poussière bien supérieures à 75 μg/m3 (0,000033 grain/pi3) et que cette poussière est principalement composée de peaux et de cheveux morts, eux-mêmes composés de molécules de kératine et de cystéine ; et que les photons UV-C à haute énergie peuvent décomposer ces molécules en molécules de thiol qui ont un seuil d’odeur très bas, cet article a révélé la cause fondamentale de l’odeur produite par la désinfection par UV9 des pièces. Étant donné que les concentrations potentielles de molécules de thiol qui en résultent sont négligeables par rapport aux limites d’exposition acceptables publiées, il est sans danger de pénétrer dans une pièce une fois la désinfection germicide par UV effectuée.

REMERCIEMENTS

Les auteurs sont reconnaissants au Dr. Wladyslaw Kowalski les données et la révision de l’article.

NOMENCLATURE

μg = microgramme

ppm = concentration volumétrique en parties par million

ppb = concentration volumétrique en parties par milliard

nm = nanomètre (10-9 m)

grain = lb/7000

Références

Spengler, Samet, McCarthhy, Indoor Air Quality Handbook. McGraw-Hill, 2001.

Fergusson,J.E.,Forbes,E.A.,Schroeder,R.J., The Elemental Composition and Sources of House Dust and Street Dust, Science of the Total Environment, Vol.50,pp.217-221, Elsevier, April 1986.

Pure Appl. Chem. 56 (5), 1984: 595–624, Nomenclature and symbolism for amino acids and peptides (IUPAC-IUB Recommendations 1983) », doi:10.1351/pac198456050595.

C.R. Robbins, Chemical and Physical Behavior of Human Hair, DOI 10.1007/978-3-642-25611-0_2, # Springer-Verlag Berlin Heidelberg 2012.

UWaterloo, Bond Lengths and Energies. n.d. Web. 21 Nov 2010. http://www.science.uwaterloo.ca/~cch…20/bondel.html

EPA. Reference Guide to Odor Thresholds for Hazardous Air Pollutants Listed in the Clean Air Act Ammndments of 1990. EPA/600/R-92/047, March 1992.

Réduire les contaminants et l’éthylène dans les chambres froides

Réduire les contaminants et l’éthylène dans les chambres froides

La prolifération des moisissures et des bactéries dans les chambres froides ou les entrepôts peuvent avoir un impact direct sur la qualité des viandes, des poissons, des fruits et des légumes entreposés ou transformés. De plus, le dégagement d’éthylène peut réduire la conservation des fruits et légumes en favorisant l’accélération du mûrissement.

Les unités de désinfection des surfaces Multi-IL Coil Clean de Sanuvox installées face aux serpentins de refroidissement détruisent les micro-organismes, tels que les bactéries et les moisissures qui s’y développent tout en diminuant la concentration d’éthylène par oxydation de la molécule.

Grâce à ses systèmes de désinfection de l’air haut de gamme, Sanuvox propose la bonne solution quand l’objectif est d’augmenter le temps de conservation des fruits et légumes dans un environnement de chambre froide en réduisant les émissions d’éthylène et les bactéries.

LES ÉQUIPEMENTS UTILISÉS

Unités de désinfection Multi-IL Coil Clean installées en face des serpentins dans l’unité de réfrigération. Chaque unité comprend une lampe UV-C /UV-V. Le module contenant les ballasts utilise des témoins DEL indiquant le statut des lampes et quand les changer (tous les deux ans).

PRINCIPE DE FONCTIONNEMENT

L’unité désinfecte l’air de deux façons :
1. La section UV-C germicide des lampes détruit les contaminants biologiques, les moisissures et les bactéries, qui se développent sur les serpentins de climatisation et réduit donc leur distribution.
2. La section oxydante des lampes UV-V diminue l’éthylène libéré et ralentit donc le processus de maturation des fruits et des légumes.

 

RALENTIR LE PROCESSUS DE DÉCOMPOSITION AVEC LES UV-C
Le processus de décomposition affecte aussi les produits frais, causé en grande partie par des champignons parasitaires et des moisissures. Grâce à ses propriétés germicides, l’UV-C est très efficace pour éliminer la reproduction de ces bio-contaminants. L’UV-C détruit les spores, les moisissures et les champignons aéroportés, ralentissant ainsi la contamination d’un fruit à l’autre.

RALENTIR LE PROCESSUS DE MÛRISSEMENT AVEC LES UV-V
La photo-oxydation UV-V peut être utilisée pour détruire les composés chimiques qui déclenchent le mûrissement des fruits et légumes. L’UV-V oxyde et neutralise les molécules d’éthylène libérées par le mûrissement, retardant ainsi la diffusion du processus à l’ensemble des produits entreposés.

Les différents états d’une plante sont influencés par des hormones végétales. Un composé organique lié à la maturation est l’éthylène, un gaz produit par les plantes à partir d’un acide aminé, la méthionine. L’éthylène augmente le niveau intra-cellulaire de certains enzymes dans les fruits et légumes fraîchement récoltés, enzymes qui incluent :

L’amylase, qui hydrolyse l’amidon en le transformant en sucre simple.

La pectinase, qui hydrolyse la pectine, une substance qui conserve la fermeté aux fruits.

Il est donc possible de ralentir le processus de maturation en réduisant la concentration de gaz éthylène dans l’air avec la photo-oxydation UV-V. L’éthylène sera alors transformé en dioxyde de carbone et en eau.

LES INSTALLATIONS POSSIBLES

De nombreux bâtiments et établissements peuvent être équipés avec les systèmes IL-CoilClean, comme les chambres froides d’épiceries, les fruiteries, les entrepôts de conservation, les producteurs maraîchers, et les camions de transport réfrigéré.

Autres articles qui pourraient vous intéresser :

Désinfecter les vestiaires et les toilettes

Désinfecter les vestiaires et les toilettes

Les odeurs que l’on retrouve dans les vestiaires sont en grande partie le résultat de la transpiration. La transpiration est au départ inodore. Ce sont les bactéries présentées à la surface de la peau, notamment sur les zones pileuses comme les aisselles ou enfermées comme les pieds, qui vont être responsables dans des effluves désagréables, lesquelles seront disséminées dans les serviettes, les équipements et autres matériaux absorbants.

Le Sanuvair® S300 de Sanuvox est la solution idéale pour réduire et éliminer les odeurs désagréables des vestiaires de moyenne dimension. Le processus breveté de Sanuvox purifie l’air en stérilisant les bactéries et les virus toute en oxydant les odeurs chimiques. Résultat : une différence qui sent !

Le préfiltre et le filtre HEPA capturent les particules jusqu’à 0,03 microns. Le processus breveté éradique les bio-contaminants, tels que les moisissures, les bactéries, les virus, les germes et les allergènes, et détruit les odeurs chimiques et biologiques.

ÉQUIPEMENTS UTILISÉS

Unité de ventilation autonome doté d’une soufflante et d’une lampe avec deux zones : une zone UV-C germicide, et une zone UV-V oxydante « modulable ». L’unité peut être aussi utilisée sur des conduits ronds de 8’’ flexibles ou rigides ou simplement accrochée au mur et dotée de grilles d’admission et de sortie.

PRINCIPE DE FONCTIONNEMENT

L’air vicié est aspiré d’un côté, purifiée devant la lampe UV germicide / UV oxydante, puis rejeté de l’autre côté. En recirculant l’air de la pièce en continu, on élimine la faune bactérienne aéroportée ainsi que les odeurs chimiques, améliorant ainsi la qualité d’air pour les occupants.

DIMENSIONNEMENT
Il faut prévoir de 4 à 6 changements d’air par heure.
• Une unité P900 avec une lampe UV-C/UV-V sera suffisante pour une salle de 1 200 pi3, soit approximativement 15’ x 10’ x 8’.
• Une unité Sanuvair® S300 avec une lampe UV-C/UV-V sera suffisante pour un local de 4 500 pi3, soit approximativement 25’ X 20’ X 10’.
• Une unité Sanuvair® S1000 avec une lampe UV-C/UV-V sera suffisante pour un local de 15 000 pi3, soit approximativement 50’ X 20’ X 15’.
L’unité comprend 2 entrées et 2 sorties d’air de 8 pouces Elle devra être fixée au mur, si possible à un endroit central. Sauf pour l’unité portable P900, les purificateurs peuvent être installés dans l’entre-plafond ou dans une pièce voisine et canalisée avec des tuyaux ronds de 8 pouces.

LES PARTICULARITÉS
Les unités de base comprennent une lampe en « J » de longueur différente, mais possédant toutes une section UV-V oxydante minimale. Pour des cas spéciaux où les odeurs sont plus concentrées, il est possible de doter les unités (sauf l’unité P900) de lampes ayant une plus grande section oxydante afin de « moduler » directement sur site la quantité d’oxydation requise.

LES INSTALLATIONS POSSIBLES

De nombreux bâtiments et établissements peuvent être équipés de ces unités de purification, tels que les chambres de sportifs (hockey, football), les centres de conditionnement physique, les salles de lavage, et les sous-sols.

Autres articles qui pourraient vous intéresser :

Combattre la fumée de cigarettes

Combattre la fumée de cigarettes

Les espaces réservés aux fumeurs, quoique souvent isolés des endroits publics, causent souvent des problèmes lorsque les odeurs se répandent à l‘intérieur. De plus, l’accumulation de fumée dans ces endroits réservés peut pousser certains fumeurs à s’en éloigner, alimentant alors d’autres situations problématiques.

Différentes solutions pour remédier à ces problèmes de fumée sont proposées par Sanuvox. En effet, installer des systèmes de purification de l’air permet de traiter l’air de ces pièces et d’éliminer les odeurs et la fumée, ainsi que la nicotine produite.

Contrairement à ses concurrents, Sanuvox n’utilise pas de coûteux filtres au charbon activé qui s’imprègnent rapidement de nicotine et de goudron. Le processus UV breveté réduit les odeurs et cristallise les gouttelettes de nicotine, lesquelles se retrouvent en poudre fine sur les filtres. Un taux de recirculation de 6 à 8 fois l’heure permet de choisir l’équipement approprié aux dimensions de la pièce.

ÉQUIPEMENTS UTILISÉS

Les unités de purification d’air aux UV autonomes sont dotées d’une soufflante de 300 ou 1000 cfm, de préfiltres pour protéger la soufflante, de lampes deux zones UV-C germicide et UV-V oxydante, doublée d’une lampe tout oxydante reliée à un détecteur de COV (composés volatils organiques).

PRINCIPE DE FONCTIONNEMENT

L’unité purifie l’air de la pièce avec la lampe régulière 2 zones UV-C/UV-V. Lorsque le niveau de fumée augmente, conséquence de l’ajout de fumeurs dans la pièce, le détecteur de COV déclenche alors la seconde lampe oxydante pour une durée d’une minute, puis l’éteint. Ce cycle recommence à chaque minute tant que le niveau de polluant est élevé. Lorsque la concentration de fumée est réduite, le détecteur éteint la lampe oxydante laissant la lampe régulière terminer le travail.

COMPRENDRE LA CHIMIE

La fumée de cigarette ou de cigare est généralement composée de :

  • Cendres en suspension
  • Gouttelettes de nicotine
  • Composés chimiques

La cendre sera captée sur les filtres. Les gouttelettes de nicotine seront asséchées par les rayons ultraviolets et se retrouveront sous forme de poudre jaune sur les filtres. Quant aux composés chimiques, ils seront oxydés par le procédé photolytique des ultraviolets : les rayons UV de hautes fréquences sont suffisamment énergétiques pour activer les molécules organiques et accélérer les réactions chimiques d’oxydation dans l’air. Les odeurs sont oxydées par le procédé de photolyse qui amorce la rupture des liaisons chimiques par l’action de la lumière ultraviolette. Les contaminants chimiques organiques sont donc décomposés et rendus inoffensifs en CO2 et H2O.

DIMENSIONNER L’ÉQUIPEMENT
Il faut prévoir de 6 à 8 changements d’air par heure. On réduit ainsi la norme d’apport d’air frais des deux tiers.

Une unité Sanuvair® S300 (de 300 cfm) sera suffisante pour un local de 2 400 pi3(12 X 20 X 10) pour 7,5 changements à l’heure.

Une unité Sanuvair® S1000 (1000 cfm) sera suffisante pour un local de 9 600 pi3 (24 X 40 X 10) pour 6,25 changements à l’heure.

LES INSTALLATIONS POSSIBLES

De nombreux bâtiments et établissements peuvent être équipés d’unités de purification de l’air pour lutter contre la fumée de tabac, tels que les CHSLD, les résidences privées, les salles de Poker, les bingos amérindiens, ou les bars à cigares.

Autres articles qui pourraient vous intéresser :