Summary of McGill University study on UVGI published in The Lancet Medical Journal (2003)

Summary of McGill University study on UVGI published in The Lancet Medical Journal (2003).

Figure 1.

Environmental conditions: Bacterial and endotoxin measures in the ventilation system. Sterile coupons were installed on different surfaces of the ventilation system: on the cooling coils and drip pan (exposed to UVGI when turned ON), and on the filters (not exposed to UVGI). For bacterial count, coupons were collected and placed facing down on petri dishes, who were then incubated. For endotoxin count, coupons were then scraped with a sterile spatula, collected to sampling tubes, eluted, and assessed with an endotoxin measuring assay under standard lab procedures (LAL assay, KLARE protocol). Data is presented as the average number of bacterial colony forming units (CFU) per coupon that was formed on incubated petri dishes, and as the average of endotoxin units (EU) measured (n=4).

Figure 2.
Identification of microorganism growth obtained from coupons. Following the protocol procedures described in Figure 1., a sample from each petri dish was further incubated for one week. Microorganism colony types were then isolated, differentiated and counted with a stereomicroscope. Representative colonies were further selected and processed to identify species, either directly or by subsequent cultivation on selective media. The different species were then identified using standard manuals and protocols. Data is presented as the average number of colony forming units (CFU) per coupon.
 

Figure 3.
Office workers self-reported symptoms. UVGI systems were installed in the ventilation systems of 3 different office buildings, irradiating the cooling coils directly and the drip pans. None of the selected buildings had prior outbreaks of building-related illnesses. All workers of these office buildings were eligible to participate in the study. During the last week before UVGI systems were turned on, participants were asked to complete a previously validated self-administered questionnaire about demographics, working, medical, and personal information. UV systems were then either turned on (for 4 consecutive weeks) or off (for 12 consecutive weeks), while other HVAC parameters (humidity, heating, cooling, recirculation) were operated as usual. Every participant completed up to 6 questionnaires (following UVGI on/off periods). The participants and personnel handing the questionnaire were informed of the study goal but were not aware of the status of the UV lamps (on/off). Results are presented as the number of participants’ reported symptoms from the administered questionnaires. Responses from each trial was deemed an independent observation.

You wish to read the full study:

Sanuvox announces distributor agreement with System Incorporated

Sanuvox announces distributor agreement with System Incorporated

By Management Team

Our company is pleased to announce the distributor agreement with System Incorporated, a leader in the repair, upgrade and replacement of commercial and industrial mechanical equipment in the Pacific Northwest. The partnership executed with System Inc. further strengthens Sanuvox North American’s leadership position as a manufacturer and provider of Indoor Air Quality UV air and surface disinfection systems.

“We are extremely excited about this partnership with System Inc.” stated Jocelyn Dame, President, Sanuvox Technologies. “System Inc. is a leader in its region in air purification design and equipment utilization strategies. Their engineering ‘whole system’ approach aligns with the airborne pathogen guidelines specified by ASHRAE, CDC, OSHA and others. Partnering with System Inc. allows us to reach further and stay closer to the end user. We are excited to offer our expertise in air and surface disinfection and start working more closely with the System team.”

About System Inc.

Founded in 1963 System Inc. specializes in retrofits and refurbishments of complex commercial and industrial HVAC systems. Over the years, the company has become recognized as an expert in HVAC refurbishments for critical facilities.

“We’ve always applied an engineering ‘whole system’ approach to refurbishments of HVAC systems installed in complex environments. Today, airborne pathogen controls are at the forefront of facility management teams’ concerns. Over our many years of rebuilding HVAC equipment, our team has developed unique insights into HVAC problems and how those problems are interrelated with indoor air quality.”

“This knowledge allows us to assist owners, contractors and engineers with design assistance and equipment support in accordance with current and evolving industry guidelines” says Ryan Brown, President, System Inc.

 

About Sanuvox Technologies Inc.

Based in Montreal, Quebec, Sanuvox is a global leader in ultraviolet air purification and provides advanced cost-effective in-duct and stand-alone UV air and coil disinfection systems, including mobile and stationary surface automated disinfection units. Sanuvox proprietary UV systems are designed to maximize exposure time delivering the Ultraviolet energy required for exceptionally high airborne sterilization rates. Sanuvox in-duct and stand-alone systems are used around the world in residential, commercial, institutional, and medical systems.

Sanuvox announces teaming agreement with Ainsworth Inc.

Sanuvox announces teaming agreement with Ainsworth Inc.

By Management Team

Our company is pleased to announce the teaming agreement with Ainsworth Inc., a wholly owned subsidiary of GDI Integrated Facility Services (TSX: GDI). The team agreement executed with Ainsworth further strengthens Sanuvox North American leadership position as a manufacturer and provider of Indoor Air Quality UV air and surface disinfection.

“We recognize Ainsworth as an industry leader in providing superior quality services in a number of trade markets including HVAC to thousands of customers in Canada and the USA” says Jocelyn Dame, Sanuvox President. Ainsworth will increase Sanuvox footprint in high level industries, including property management, manufacturing and health institutions.  Ainsworth will be taking advantage of the Master Group national footprint to provide expertise, guidance in sizing the equipment and product inventory.

“We are extremely excited about this partnership with Ainsworth” stated Jocelyn Dame, “Ainsworth is the Canadian leader in multi-trade facility service provider and partnering with such an executive partner allows us to reach further and stay closer to the end user.  We are excited to offer our expertise in air and surface disinfection and start working more closely with the Ainsworth team.”

About Ainsworth Inc.

Ainsworth is one of Canada’s leading integrated multi-trade companies providing high-quality technical trade services, including HVAC, mechanical, electrical, data cabling, and building and industrial automation for institutional, commercial, and industrial clients across the country. As an integrated multi-trade company, Ainsworth offers end-to-end services and solutions for all asset maintenance and refurbishment requirements of their customers.

Ainsworth is a wholly owned subsidiary of GDI Integrated Facility Services, a publicly traded company on the Toronto Stock Exchange (TSX: GDI) and a leader and innovator in the industry. GDI is the fifth-largest facility services business in North America with more than 24,000 employees, servicing over 500 million square feet, and with operations across Canada and the United States.

 

About Sanuvox Technologies Inc.

Based in Montreal, Quebec, Sanuvox is a global leader in ultraviolet air purification and provides advanced cost-effective in-duct and stand-alone UV air and coil disinfection systems, including mobile and stationary surface automated disinfection units. Sanuvox proprietary UV systems are designed to maximize exposure time delivering the Ultraviolet energy required for exceptionally high airborne sterilization rates. Sanuvox in-duct and stand-alone systems are used around the world in residential, commercial, institutional, and medical systems.

Prominent Houston Hospital, 2015

The case

A prominent Houston, Texas hospital’s air handler units were covered in Aspergillus due to poor filtration and internally lined insulation. Sanuvox IL Coilclean was able to reverse clean the air handler units preventing any contamination in the hospital and saving the hospital thousands of dollars in energy due to reverse cleaning the cooling coils.

The Problem

Our distributor, The Filterman LLC, received a phone call from a prominent Houston, Texas hospital with a severe microbial problem. Aspergillus was growing on the evaporator coil, the transition ducting and the HEPA filters. The hospital was using substandard filters and were not sealing the filters to prevent air bypass. Houston summers routinely get above 100 degrees F and range up to 90% humidity. Biofilm growth in the fins of the cooling coil was preventing proper dehumidification and reducing the air handlers cooling capacity, resulting in thousands of dollars in wasted energy. 

After 4 years of poor filtration, the air handler units were covered in Aspergillus. The black internally lined insulation was completely white with mold growth. The HEPA filters began accumulating moisture due to the fouled evaporator coils further promoting mold growth and reducing the filters life.

Before: Pan is full may need to unclog drain of the biofilm accumulating

Sanuvox Customized Solution

Together with The Filterman, Sanuvox sized each evaporator coil, measured airflow, duct dimensions and recommended the Biowall 60” fixture per transition ducting and specific sizes of the IL CoilClean product based on coil dimensions for each of the air handler units throughout the hospital.

Conclusion

Within 4 months of Sanuvox Biowall and IL CoilClean installation, the evaporator coils began releasing biofilm that had accumulated through the fins of the coils. This biofilm reduced the efficiency of the cooling coil and restricted dehumidification of the air, which became the source of contamination. The internally lined insulation began turning black again as the mold growth was disinfected. The HEPA filters were changed and 5 years later, have still not grown mold.

Installation of a BioWall in the ducts

4 days incubation time

Cannabis Producer in Rigaud, May 2018

The case

This grower has 3 grow rooms in which he produces cannabis. The air system in each room is 5 tons (2,000 cfm). There are also fans all over the peripheral of the rooms to move the air around.

The Problem

Production was always infected with powdery mildew, botrytis and fusarium. These spores would spread on a few plants, therefore contaminating the rest of the plants through air flow.
It was becoming an issue with profitability, as the infected cannabis plants had to be discarded of.

Indoor Cannabis Facility

Fans

GC-Quattro UV Air Purifier

Sanuvox Customized Solution

After sizing calculation, it was proposed to install a GC QUATTRO unit in each return of each air handler. Because one of the owners was an HVAC contractor, the installation was a pretty simple task. Low maintenance of the units was also considered. In between production, the rooms were cleaned thoroughly, and the fans blades disinfected from all the dust settlings.

Conclusion

Two months later, the owner reported a full harvest in his 3 rooms, with almost no powdery mildew. He also noticed that all the fans alongside the walls no longer contained a sticky film build up on the blades. So they no longer require to be wiped down with alcohol.

The grower has launched a new larger facility in the northern part of Ontario: every unit will be equipped with SANUVOX technologies.

Reducing Odors in Waste Rooms

Reducing Odors in Waste Rooms

Facilities, apartments and condominiums often suffer from odors from the garbage rooms that migrate from the holding area to the garage or on the floors through the chute system.

Different stand-alone systems can be used to eliminate these problems by destroying bacteria and removing chemical and biological odors. The objective is to rapidly recirculate the air in the room in front of UV-C to break down bacteria’s DNA, and in front of UV-V to oxidize the chemical decay molecules while minimizing the residual ozone.

MANUAL SETTING EQUIPMENT

The Sanuvair® S600:
This stand-alone UV air purifier incorporates a variable blower of 300 to 600 cfm, an aluminum mesh washable prefilter to capture particulates and 3 full UV-V oxidizing lamps. According to the customer’s needs, one, two or three UV-V 6.5’’ U shaped  lamps are lighted up.

Room size:  up to 8,000 cubic feet

Suggested installation Sanuvair® S600:

AUTOMATIC SETTING EQUIPMENT

The Sanuvair® S300 OZD:
This stand-alone UV air purifier incorporates a two-speed blower of 220/300 cfm, a 2” pleated prefilter to capture particulates, 1 UVC/UVV lamp and 1 full UV-V oxidizing lamp tied with 20 ft of wiring to an ozone controller set at 0.025 ppm. The controller will sample the air every minute and trigger off the UV-V lamp if more than the set point of ozone is detected. It also comes with 2 extra prefilters.

Room size:  up to 3,000 cubic feet

Suggested installation Sanuvair® S300 OZD:

The Sanuvair® S1000 OZD:
This stand-alone UV air purifier incorporates a blower of 1,000 cfm, 2 x 1” pleated prefilter to capture particulates, 1 UVC/UVV “J” shaped 16” lamp and 1 full UV-V “J” shaped 16” oxidizing lamp tied with 20 ft of wiring to an ozone controller set at 0.025 ppm. The controller will sample the air every minute and trigger off the UV-V lamp if more than the set point of ozone is detected. It also comes with 2 extra prefilters.

Room size:  up to 10,000 cubic feet

Suggested installation Sanuvair® S1000 OZD:

Other articles that might interest you:

Formicary Corrosion & Biofilm Fouling of Cooling Coils

Formicary Corrosion and Biofilm Fouling of Cooling Coils

By Normand Brais, P.Eng., M.A.Sc., Ph.D.

INTRODUCTION

Air conditioning is responsible for substantial electricity consumption and peak demand in most of the United States. Over the past decade, energy conservation researchers have studied air conditioning more and more. Much of this research has focused on the impact of air flow, duct leakage, and refrigerant charge level on cooling performance.

One area, which has been neglected by researchers, is fouling of evaporator and formicary corrosion. Known commonly as ant’s nest corrosion, champagne leaks, or just simply as formicary, the issue presents as a hard to detect leak within the fin pack of an evaporator coil. This tiny leak or set of leaks results in loss of system refrigerant over time. While the incidence of formicary corrosion is low nationwide, it is more prevalent in warm, humid climates found in southern portions of the United States where slimy biofilms coat the coil fins.

 WHAT CAUSES IT

The tunneling action that leads to corrosion is caused by the presence of organic acids mixed with moisture on the copper tube within the fin pack. Two common acids known to cause formicary corrosion are formic and acetic acids. Certain manufacturing oils and lubricants can contain compounds that form these organic acids, but common household items can also breakdown to form formic and acetic acids. These can include building materials like formaldehyde adhesives, foam insulation, and laminates, as well as personal hygiene products like cosmetics, disinfectants, deodorizers, and cleaning solvents. To initiate corrosion, the presence of water is necessary. The corrosion rate is aggravated by the presence of mold biofilm that keeps the fins wet.

 HOW TO REDUCE IT

Every technician will tell you that every time they look at these coils, they are dirty with mold biofilm. A standard part of routine A/C maintenance and residential commissioning is to clean the evaporator coil with a wire brush and detergent or other cleaning chemistry, and to clean the outdoor coil of leaves and other debris. Over the last 20 years, the simple use of appropriate germicidal UV light can prevent this and keep the coil clean and free of any biofilm buildup.

The presence of mold biofilm on cooling coil acts like a water sponge that keeps the fins constantly wet and sticky, which capture and retain particulates and chemical contaminants, thus enhancing the formic acid corrosion rate. When the biofilm is eliminated with an efficient germicidal UV system, the coil is not permanently wet, does not trap and retains as much contaminants, and consequently its corrosion rate is greatly reduced.

                                                                                     Buildup of mold biofilm in lower right hand corner completely blocks air flow

Coils normally foul due to bioaerosols and other biologically active materials, which are ubiquitous in hot climates. This usually also lead to significant indoor air quality problems that can trigger respiratory allergic responses of building occupants.

                                                                        Fungal biofilm growth on a residential (Left) and commercial (Right) cooling coil

The biofilm that causes evaporator fouling and its accelerated corrosion also impacts on the cooling performance and energy efficiency. Large commercial heating and cooling coils have the same problems and are prone to the same type of fouling and consequential corrosion issues. Their lifespan can also be increased notably by using an appropriate UV germicidal system that prevents mold buildup in hot and humid climate.

The first step to take to reduce the formicary corrosion due is to prevent the formation of a biofilm of molds and fungi with an adequate germicidal UV system. Biofilm-free fins will be less susceptible to retain dusts and potentially corrosive compounds, as well as the moisture that activates the corrosion effect.

References

Siegel, Jeffrey, I. Walker & M. Sherman. 2002. “Dirty Air Conditioners: Energy Implications of Coil Fouling” Submitted to the 2002 ACEEE Summer Study on Energy Efficiency in Buildings.

Siegel, Jeffrey A. and W.W. Nazaroff. 2002. “Modeling Particle Deposition on HVAC Heat Exchangers.” Submitted to the Indoor Air 2002 conference.

Siegel, Jeffrey and I.S. Walker. 2001. “Deposition of Biological Aerosols on HVAC Heat Exchangers.”

Other articles that might interest you:

Fighting Tobacco Smoke

Fighting Tobacco Smoke

Designated smoking areas, althrough typically spared from working and living spaces, often cause problems with air that may very well circulate in and out of these areas. The smoking area itself may be overwhelmed with cigarette smoke, causing smokers to seek alternative places to smoke.

Sanuvox Technologies offers two units that are effective at removing tobacco smoke from the air and reducing cigarette odors, as well as nicotine and smoke that are so problematic. Unlike conventional technologies, Sanuvox UV systems do not use costly carbon for absorption nor rely solely on filters, which easily become coated with tar and nicotine The proprietory process changes the molecular structure of the tobacco smoke into a fine powder, which is then captured on the filter media. It is recommended that the UV systems be sized to provide a recirculation rate of 6 to 8 air changes per hour.

THE EQUIPMENT

Stand-alone Sanuvair® 300 VOC or Sanuvair® 1000 VOC UV air purifiers that include germicidal and oxidizing ultraviolet lamps, prefilters and a main filter to capture nicotine and smoke. An optional VOC (Volatile Organic Compound) detector can be used with multiple lamps when the number of occupants increases.

Typical installation:

OPERATING THE EQUIPMENT

Sanuvox dual zone UV lamp will reduce odors, nicotine and smoke in the room through recirculation. With the optional UV-V lamp(s) and VOC detector, if the smoke level increases (because there are more smokers), the VOC detector will trigger the additional oxidizing lamp(s), then shut them off when the level decreases. The cycle is repeated, lowering the odor, nicotine and smoke levels, until the maximum reduction is reached.

UNDERSTANDING THE CHEMISTRY
Cigarette smoke is composed mainly of:

  • White ash
  • Nicotine molecules
  • Chemical by-products

Ash will be trapped by the pre-filters. Nicotine will be transformed into a type of yellow powder that will be captured by the prefilters and the main filter. The chemical by-products will be oxidized by the UV process: high frequency UV-V energy activates the organic molecules and accelerates the chemical reaction, resulting in the air being oxidized. Odors are oxidized by the process of photolysis that initiates the breaking of chemical bonds by the action of the ultraviolet light. The oxidation process will reduce odors and chemical contaminants by changing the complex molecular contaminants into CO2 and H2O

SIZING THE EQUIPMENT

Approximately 6 to 8 air changes per hour are required. This reduces the standard of fresh air required by two thirds.

An Sanuvair® S300 VOC unit (300 cfm) will be sufficient for a 1,920 cu.ft. room (12’ X 20’ X 8’) with 9.3 changes per hour.

An Sanuvair® S1000 VOC unit (1000 cfm) will be sufficient for a 9,600 cu.ft. room (20’ X 40’ X 10’) with 7.5 changes per hour.

WHERE TO INSTALL

Many buildings and facilities can be equipped with one of these stand-alone units, like eldercare homes, private homes, poker rooms and casinos, bingo halls, cigar bar, or smoking rooms.

Other articles that might interest you:

Removing Ground Level Odors

Removing Ground Level Odors

Processing activities, as well as maintenance operations, can produce troublesome odors that may affect those working and visiting a site or facility. It may even cause problems for those living in the underline community. These applications include sewage treatment facilities, sump pump operations, excavation, pumping stations, arena ice pits, grease traps, etc.

Sanuvox UV disinfection systems may be outfitted with special oxidation UV Lamp (185nm) that produce high levels of ozone (O3) to effectively combat odors emanating from these various types of applications. The self-contained systems can be located very close to the source of the odor alleviating the issue where it is most concentrated.

When the objective is to to substantially reduce odors generated by a sump pit, such as sewage ditch, sewer pumping stations, residual from ice scraping equipment (Zamboni), or grease traps, Sanuvox offers the right solution with its high efficiency patented air disinfection system.

THE EQUIPMENT

Stand-alone units that will either process air through recirculation in a room or inject a small quantity of ozone directly into the specific containment device to reduce odors.

An ozone controller can be used to limit the residual ozone outside of the containment area to a concentration level lower than the ASHRAE limit (0.05ppm).

Typical Sanuvair® S1000 OZD INSTALLATION:

OPERATING THE EQUIPMENT

The unit purifies the air through recirculation in two ways:
1. The UV lamp germicidal section destroys biological contaminants (viruses, fungi, bacteria) moving through air.
2. The UV lamp oxidizing section reduces the chemical components in the air through photo-oxidation.

PROCESS ON BIOLOGICAL AND CHEMICAL CONTAMINANTS
1-ACTIVATION PHASE: H2O+ O* –> OH* +OH*
Ultraviolet photon energy (170-220nm) is emitted from a high-intensity source to decompose (break-down) oxygen molecules into activated monoatomic oxygen. The rate of production or effectiveness of this process depends on the wavelength and intensity of its source.

2-REACTION PHASE: OH*+P –> POH
The activated oxygen atoms (O*) are then mixed in the airstream; the process will react with any compound containing carbon-hydrogen or sulfur, reducing them by successive oxidation to odorless and harmless by-products. If the activated oxygen atoms outnumber airborne contaminants, there will be the formation of ozone (O3) which will occur following the oxidation of normal oxygen molecules (02).

3- NEUTRALISATION PHASE: (also germicidal) O3+UV(C) –> O2+O*: O+O –> O2

SIZING
The stand-alone units will include an extra oxidizing (UV-V) lamp. In the absence of an ozone controller, a warning label must be provided to the user. Certain conditions may require up to four UV-V lamps in one unit.

WHERE TO INSTALL

Many buildings and facilities can be equipped with the S1000, like municipal sewage treatment plants, municipal pumping stations, ice-snow containment (pit) areas, hotels grease pits, and grey water treatment.

Other articles that might interest you:

Purifying Air in Kennels & Veterinarian Centers

Purifying Air in Kennels and Veterinarian Centers

Illness among animals especially dogs can be significantly higher when many of them are boarded within close proximity, or kept within the same room or building. Airborne illnesses can easily be transmitted from one animal to another. Odors may cause issues when they migrate to other areas and affect staff and visitors.

Sanuvox UV systems are the ideal solution for destroying airborne viruses and bacteria, as well as reducing the concentration of unpleasant odors, such as ammonia produced by animals in kennels, shelters, pet stores and veterinarian clinics. Its proprietary system eradicates biological contaminants (bacteria, viruses, germs and allergens), and destroys chemicals and biological odors.

THE EQUIPMENT

Multiple application UV systems can be used for both stand-alone and duct-mount installations.

As stand-alone units, the P900 is equipped with an 80 cfm blower, the Sanuvair® S300 with a 300 cfm blower, and the Sanuvair® S1000 with a 1000 cfm blower. Sanuvair® S300 and S1000 also come with filters to capture particulates (pet hair, etc.). A dual zone UV-C/UV-V lamp is standard. An “adjustable” oxidizing lamp is available.

As an in-duct unit, the Quattro is installed parallel to the airflow and includes four UV-C/UV-V lamps, each with a one-inch section of oxidizing UV-V. Two of the lamp’s oxidizing sections are covered with removable foil, allowing for increased oxidation if necessary.

Typical installations:

OPERATING THE EQUIPMENT

Each unit treats the air through recirculation in two ways:
1. The Germicidal UV-C lamp portion destroys airborne biological contaminants (viruses, mold,
bacteria.)
2. The Oxidizing UV-V lamp portion reduces airborne chemical contaminants and VOCs through
photo-oxidation.

PROCESS ON BIOLOGICAL AND CHEMICAL CONTAMINANTS

1-ACTIVATION PHASE:  H2O + O* –> OH* +OH*
Ultraviolet photon energy (170-220nm) is emitted from a high-intensity source to decompose (break down) oxygen molecules into activated monoatomic oxygen. The rate of production or effectiveness of this process depends on the wavelength and intensity of its source.

2-REACTION PHASE: OH*+P –> POH
The activated oxygen atoms (O*) are then mixed in the airstream; the process will react with any compound containing carbon-hydrogen or sulfur, reducing them by successive oxidation to odorless and harmless by-products. If airborne contaminants are outnumbered by the activated oxygen atoms, then there will be formation of residual ozone (O3) which will occur following the oxidation of normal oxygen molecules (02).

3- NEUTRALISATION PHASE: (also germicidal)  O3+UV(C) –> O2+O*: O+O –> O2

CHEMICAL DECOMPOSITION:
Ammonia NH3+OH* –> N2 + H2O

WHERE TO INSTALL

Many buildings and facilities can be equipped with either the stand-alone disinfection units or the in-duct unit, like kennels, pet boarding and animal shelters, laboratories, veterinarian centers, and zoos and pet stores.

Other articles that might interest you: